Electric current


Electric current


An electric current is the rate of flow of electric charge past a point:2:622 or region.:614 An electric current is said to exist when there is a net flow of electric charge through a region.:832 In electric circuits this charge is often carried by electrons moving through a wire. It can also be carried by ions in an electrolyte, or by both ions and electrons such as in an ionized gas (plasma).

The SI unit of electric current is the ampere, which is the flow of electric charge across a surface at the rate of one coulomb per second. The ampere (symbol: A) is an SI base unit:15 Electric current is measured using a device called an ammeter.:788

Electric currents cause Joule heating, which creates light in incandescent light bulbs. They also create magnetic fields, which are used in motors, inductors and generators.

The moving charged particles in an electric current are called charge carriers. In metals, one or more electrons from each atom are loosely bound to the atom, and can move freely about within the metal. These conduction electrons are the charge carriers in metal conductors.

The conventional symbol for current is I, which originates from the French phrase intensité du courant, (current intensity). Current intensity is often referred to simply as current. The I symbol was used by André-Marie Ampère, after whom the unit of electric current is named, in formulating Ampère's force law (1820). The notation travelled from France to Great Britain, where it became standard, although at least one journal did not change from using C to I until 1896.

In alternating current (AC) systems, the movement of electric charge periodically reverses direction. AC is the form of electric power most commonly delivered to businesses and residences. The usual waveform of an AC power circuit is a sine wave. Certain applications use different waveforms, such as triangular or square waves. Audio and radio signals carried on electrical wires are also examples of alternating current. An important goal in these applications is recovery of information encoded (or modulated) onto the AC signal.

In contrast, direct current (DC) is the unidirectional flow of electric charge, or a system in which the movement of electric charge is in one direction only. Direct current is produced by sources such as batteries, thermocouples, solar cells, and commutator-type electric machines of the dynamo type. Direct current may flow in a conductor such as a wire, but can also flow through semiconductors, insulators, or even through a vacuum as in electron or ion beams. An old name for direct current was galvanic current.



Media Contact:
oliva G
Journal Manager
Journal of Insights in Analytical Electrochemistry

Email : analyticalelectrochemistry@chemistryres.com